翻訳と辞書 |
Classification of Fatou components : ウィキペディア英語版 | Classification of Fatou components
In mathematics, Fatou components are components of the Fatou set. ==Rational case==
If f is a rational function : defined in the extended complex plane, and if it is a nonlinear function ( degree > 1 ) : then for a periodic component of the Fatou set, exactly one of the following holds: # contains an attracting periodic point # is parabolic〔wikibooks : parabolic Julia sets〕 # is a Siegel disc # is a Herman ring. A Siegel disk is a simply connected Fatou component on which ''f''(''z'') is analytically conjugate to a Euclidean rotation of the unit disc onto itself by an irrational rotation angle. A Herman ring is a double connected Fatou component (an annulus) on which ''f''(''z'') is analytically conjugate to a Euclidean rotation of a round annulus, again by an irrational rotation angle.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Classification of Fatou components」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|